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Abstract

This report is intended to give the reader an insight into the atmo-
sphere, goings on and mathematics at the 29th Balkan Mathematical
Olympiad, which took place between the 26th April and the 2nd May
2012 in Antalya, Turkey. The competition was excellently run, and
the trips were both thoroughly enjoyable – one was a boat trip on the
mediterranean and the other involved tourist attractions such as an
ancient ruins and a waterfall.

In the exam, the team did well – we achieved two silver medals,
two bronze and two honourable mentions. Question 3 was our most
well answered (collectively we scored 48), followed by Q1 (41), Q2 (33)
and finally Q4 (16). The problems were all rewarding, and this report
spends some time discussing them. However, the main focus of this
report is on the various theorems and challenges the team worked on
collectively in our spare time (of which there were many) – from theory
of infinite sets to geometry and from inequalities to combinatorics,
there seemed to be no end to the stream of problems supplied both by
our leaders, Geoff and Gerry, and by ourselves.

Introduction

Like a fairytale, with its beginning, middle and end, most student reports
are comprised of three elements, each with its own degree of interestingness.
First, mathematical events; second, non-mathematical events; and third, sto-
ries about Adam Goucher. In his absence, I am left not with three elements,
but with the relatively puny two. The reader is advised not to ignore the
difference between three and two – indeed, if 3 = 2 then 1 = 0 (subtract-
ing 2 from both sides) and as such I do not exist, which would be a crying
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shame for my similarly non-existent parents. Rather than bemoaning the
lack of a third element, however, I shall embrace the opportunity to alter the
structure of the student report entirely, by scrapping the ‘non-mathematical
event’ section voluntarily and focussing entirely on mathematical events (ef-
fective from the next paragraph). Suffice to say that the hotel was luxurious,
the weather impeccable, and our trip marred only by the lack of Geoff Smith
(he was kidnapped by the organisers at the airport and taken to a secret
location, wherein he was forced to work around the clock in unbearable con-
ditions for 48 hours to prepare the paper, and only returned to us after the
exam). From this point forth, minimal attention will be paid to all things
non-mathematical – any parents reading this report should hence skip over
sections densely populated with squiggles and remain in the realm of the
ordinary. I have also appendicised solutions to some questions I set – some
of these are in the answer section because you should actually try to find
the solution first, and others simply so that readers with lesser mathematical
ability (such as my mum) don’t need to scroll through pages of equations to
get to something they care about.

Although this report and that of Geoff Smith concern the same event,
they are wildly different for three reasons. Firstly, he was in a different
place about half of the time, either on the jury, marking or co-ordinating;
secondly, his contains no maths whatsoever and mine contains very little
else; and thirdly, while he handles the matter of our fellow passengers on the
outward flight delicately and sensitively, I consider it my duty to make my
disgust known.

Thursday 26th April

In which we journey to Antalya, discuss mathematics, are separated from
Geoff, meet our guide and are given various freebies

Gatwick Airport on a working Thursday is, consistent with expectations,
quiet. On the plane we manage to get some maths going. Gerry (deputy
team leader) grapples with some beautifully drawn geometry while Geoff
(team leader) tells us stories of past competitions. Matthew (UNK4) works
on a selection of old BalkanMO problems and later some infinite set theory.
Matei (UNK5) and Daniel (UNK3), with occasional help from Robin (UNK1)
and I (UNK2), work on an interesting set of geometry problems involving
cevians.
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It is well known that for any point P coplanar with triangle ABC, where
AP meets BC at D, BP meets AC at E and CP meets AB at F ,

AF

FB
· BD
DC
· CE
EA

= 1

The question concerns situations where AF − FB +BD −DC + CE −
EA = 0. Of course, the trivial examples were the centroid, the gergonne
point and the nagel point, but interesting points to consider were the incen-
tre, orthocentre, symmedian point or circumcentre. Given that P is each of
these, determining the properties of triangles which comply with the above
condition is a worthwhile exercise. It generally involves finding expressions
for each relevant line segment (I use areal co-ordinates), then forming a huge
polynomial (generally in a, b and c) and factorising. Importantly, all the
terms in the polynomial had the same “order” (here the word means the sum
of the powers of each of a, b and c – for example, a5bc is 7, as is a4c3), and
Matei teaches us a nice way of factorising such polynomials. If the “order” of
each term is n, draw a triangle of isogonal points with n+ 1 points on each
side. For example, for n = 3, 10 dots should be arranged in the form of a
ten-pin bowling setup. Label each vertex a, b and c; each point refers to one
term. The distance from a dot D to each edge (as a stepping-stone distance,
not as the crow flies) is the power of the letter assigned to the opposite vertex
in the term referred to by D. Over each dot, write the coefficient of that
term (including the sign). Now it is possible to pick out factors by noticing
repeating patterns – for example, a3 − a2b + ab2 − b2c + bc2 − c3 would be
written as

a

1

−1 0

1 0 0

0 −1 1 −1

b c

and it is relatively easy to spot the factor
a

1

0 −1

b c
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and its negative version, which gives the factor a − c. To someone good at
factorisation, this may seem like a waste of time, but as kings and queens
have said, I am not good at factorisation.

Sitting in the middle on the six, I have the privilege of floating from the
geometrical musings of Daniel and Matei to Matthew’s set theory. He is
considering pairs of uncountable sets of reals between which a bijection is
possible that preserves order. We agree that such bijections exist regardless
of size, but only provided the intervals’ ends are closed and open in the same
way (intervals starting or ending with −∞ or ∞ are taken as open on that
end). We turn our attention to the cantor set, agreeing – falsely – that the
map is possible; write each number in the cantor set base three, and only 0s
and 2s are used (1 is written as 0.222. . . and 0.1 as 0.0222. . . and so on).
Then turn each two into a 1 and we have 0 to 1 in binary. Unfortunately,
as I realised at lunch on Friday (as I write) a third and two thirds both
map to a half, as 0.0111. . . =0.1 in base two. We now turn our attention to
sets that we will suspect we will get nowhere with – for example, a bijection
between R and R \Q preserving order – I cannot find a way through this at
all. We ask Geoff, and he confirms that it’s “hard” (he later proves that no
such bijection exists, as does Robin1) and steers the conversation towards
maths that’s way over our heads – a problem about aeroplanes. We are to
estimate the distance to the horizon in a plane at cruising altitude, and I
calculate that it’s somewhere between 200 and 300 miles. Geoff nods, and
concludes that when flying over London, Manchester is visible. Matei and
Daniel have turned their attention to the Butterfly Theorem, a result which
they would focus on throughout the following day. On the plane it interested
me as well, but at the time of writing I am sick to the back teeth with this
useless, rancid, boring and pathetic result, so you can look it up.

When the plane lands we say a teary farewell to Geoff, and meet Salih,
a friendly Turkish student with impressive English.
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Gerry constructs the reals on the journey to the hotel, starting with
Peano’s successors and culminating in the Dedekind cut which launches us
from rational to real (the only part of the process we hadn’t foreseen). Soon
we pull up at the hotel.

At this point the reader should become acquainted with the notes docu-
ment that the team was sent a few days before we left – based, according to
Geoff, on observations from Moldova two years before – such tips as ‘bring
towels’, ‘bring loo roll’, ‘do not drink tap water’ and ‘do not leave your
valuables lying around obviously in hotel rooms whilst you are out’.

We are staying in a five star hotel. There are six main dining areas, each
heaving with mouthwatering turkish specialities. There are three swimming
pools, the main one comprised of two large sections joined by a decorative
channel under a bridge, and including four water slides, a statue of a mermaid
and a fountain. Hoteliers are on hand to carry our luggage to our rooms,
each of which could house another swimming pool, and includes a large en
suite bathroom and a balcony (I beat Robin to the double bed; selfish since
I am noticeably smaller).
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If you choose, at this point, to berate me for fickly forsaking my promise
to avoid non-mathematical events, then you lack foresight. It’s time for a
chat about Hilbert’s Hotel. A hotel with ℵ0 rooms is simply not impressive
to us any more, having seen our enormous hotel. Admittedly it does not have
ℵ0 rooms, but we agree that it is only a few dozen short. The Continuum
Crib, on the other hand, is a hotel (designed by ourselves) with 2ℵ0 rooms
(each assigned a real number between 0 and 1). Cantor regularly receives
continuum coaches, and gives each passenger a room (guests never leave
– the continuum crib should really be called Gabriel Gendler’s great big
graveyard). Of course, this is no problem; Cantor can house 2ℵ0 of these
coach cohorts by a rich choice of R2 → R bijections, so ℵ0 of them (they do
not arrive continuously and so are countable) shouldn’t be a problem. Cantor
has always operated as follows – each time a coach arrives, he assigns it an
integer ID (starting at 1 and counting up). He then assigns each passenger a
new real number between 1− 1

2n−1 and 1− 1
2n , and sends each guest to these

rooms. Unfortunately, Cantor’s ghoulish guests are getting upset. Although
Cantor knows that each guest has its own real number, and that the reals
are evenly spread, the guests seem to think that as the interval shrinks, they
become more crammed. Can Cantor change his accommodation system to
avoid this perception, without making his guests change rooms after they
have arrived?2

We unpack our suitcases and rummage through our BalkMO freebies,
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including turkish delight, which is turkish, and a pair of compasses, which
are not (also included is a list of these freebies which does not include itself,
but Cantor and Russell seems too much for one evening). We get to bed
at 2 in the morning, asserting that considering the luxury that is our hotel,
Geoff must be in Paradise.

Friday 27th April

In which we explore the hotel, attend the opening ceremony, discuss mathe-
matics and swim

Despite today’s date being the 33
th of the 22

th, very few mathematical
events occur. We wake at 7.45 and view the hotel in daylight for the first
time – indeed, it is a thing of beauty, and it is vast.

Robin and I have the best view from our window, overlooking the pool(s)
and the mediterranean. Bizarrely, a river runs along the coast without meet-
ing it for quite some distance, but nobody really cares. An early transfer
moves us to the opening ceremony, which takes place in a third hotel, even
more luxurious than ours – the whole thing is an enormous golfing resort,
much like most of Antalya. I will not detail the events at the opening cere-
mony, since they all come under the category of non-mathematical event.
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We now have 10 hours of free time – a wonderfully relaxed, calm day.
Matei, Robin and I swim for a while, although this too is not very mathe-
matical, but for most of the afternoon all of us (except Harry) sit by the pool
doing maths. Daniel and Matei independently solve the Butterfly Theorem,
and Gerry shows us some beautiful problems involving symmedians. The
first is a known result of symmedians, but Gerry wants a geometric proof.
A triangle ABC is circumscribed by Γ. Tangents to Γ at B and C meet at
T . prove that ∠TAB = ∠CAM , where M is the midpoint of BC.3

We all marvel at the beautifully symmetric proof he gives – I am partic-
ularly impressed with the construction of two new points, since I am rarely
able to use constructions in my proofs. Now Gerry shows us a wonderful
symmedian problem from the Australian Olympiad: in a triangle ABC, Γ
is the circumcircle, M is the midpoint of BC, H is the orthocentre and D
is the foot of AH. MH meets Γ above BC at X; XD meets Γ again at Y .
Show that AY is a symmedian!

I spend most of the day writing the student report so far, and updating
the others with my progress every so often. As I write (today) the Australian
problem remains unsolved.
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Saturday 28th April

In which we sit the exam, are reunited with Geoff, discuss our solutions, play
chess and discuss mathematics

With our joyous rest day a distant memory, we wake up bright and early
for the exam. This is to begin at 9 and to last 4.5 hours, much like FSTs,
NSTs, XSTs, IMOs, RMMs and plane journeys to Turkey. There will be
four questions (1 more than in the exams listed above, and as we know, the
difference between 4 and 3 should not be ignored) and as such the exam
is a daunting undertaking. Geoff mentions that last year was a tough one
– set in Romania, a country of talented mathematicians and perhaps more
talented problem setters – and hopes that this year would be easier. He
is correct – the problems (as follows) result in unusually high marks across
most countries – the Turkish team, for example, score 40, 40, 40, 39, 36 and
31. The problems are as follows:

Question 1 – Let A, B and C be points lying on a circle Γ with centre
O. Assume that ∠ABC > 90◦. Let D be the point of intersection of the
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line AB with the line perpendicular to AC at C. Let ` be the line through
D which is perpendicular to AO. Let E be the point of intersection of `
with the line AC, and let F be the point of intersection of Γ with ` that lies
between D and E. Prove that the circumcircles of 4BFE and 4CFD are
tangent at F .

Having the proficiency in Geometry of a coconut, I manage to miss this
problem completely, failing to notice even some of the most blatantly ob-
vious properties of the configuration – however, my able colleagues are less
unsuccessful. Matthew runs out of time half way through his proof, but the
other UNKs claim complete solutions. Harry’s solution (without doubt his
best) is detailed in the answer section.4

Question 2 – show that for all x, y, z ∈ R+,∑
cyc

(x+ y)
√
x+ y

√
y + z ≥ 4(xy + xz + yz)

Robin, Matei and I have the most complete solutions here, all using the
substitution a2 = x + y, b2 = x + z and c2 = y + z. Robin then employs a
useful inequality from Schur, followed by Muirhead. His solution is akin to
using a nuclear bomb to apprehend a shoplifter – it is ridiculously powerful,
and he obliterates the inequality like a psychotic pyromaniac. In other words,
it is incredibly professional.5

Matei’s solution is extremely insightful – after the initial a, b, c substi-
tution, he carries out yet another, with d+ e = a, d+ f = b and e+ f = c.
After an enormous expansion (which he doesn’t carry out line by line, to the
dismay of Gerry who must therefore slog it out himself when marking the
paper) this becomes a sum of squares and Matei is done. I am enchanted by
this solution. Like a demented wombat in comparison to Matei and Robin,
the elegant kangaroos, I opt for a bizarre and unusual proof, which is imag-
inative but drastically more complicated. Nevertheless, it makes for some
wonderful comedy, so I have included it in the answer section.6

On the subject of solutions to question 2, the answer section below con-
tains two more – one from AoPS7 that afternoon and the other from Daniel
the following day8 (he is disappointed as Q2 is the only one he doesn’t get,
and then after the exam he finds the best solution of them all).
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Question 3 – let n be a positive integer. Let Pn = {2n, 2n−1 ·3, . . . , 2n−r ·
3r, . . . , 3n}. For each subset X of Pn, we write SX for the sum of elements of
X, with the convention that S∅ = 0. Suppose that y ∈ R with 0 ≤ y− SY ≤
3n+1−2n+1. Prove that there is a subset Y of Pn such that 0 ≤ y−SY < 2n.

This “combinatorics” problem (it was the only one on the shortlist, so
we suspect that the organisers were desperate) proves to be our strongest
question, and we all submit roughly the same solution. Matthew’s is recorded
in the answer section.9

Question 4 – Let Z+ be the set of positive integers. Find all functions
f : Z+ → Z+ such that the following conditions hold:

i) f(n!) = f(n)! for all n ∈ Z+

ii) m− n | f(m)− f(n) ∀ m 6= n ∈ Z+

Daniel claims the only solution here (although Matei gets a long way).
The answer, of course, is f(n) = 1, f(n) = 2 or f(n) = n – an observation
which would have earned me a mark had I bothered to write it down – I
suppose this kind of mistake is what the Balkans are for. I cannot envisage
myself coming up with Daniel’s proof in a million years – the number of steps
is ridiculous.10

Upsettingly for anyone who cares about the environment, we are only
allowed to write on one side of the paper (they may as well have given
us möbius strips). Another interesting observation is that the rules sheet
includes a prohibition against having toys in the exam hall – I wonder how
much help even the most intelligent of teddy bears could realistically be? We
troop out of the hall (which lost power on two occasions during the exam)
and are reunited with Geoff, who debriefs us. We now have a free afternoon
(followed by three free days) in which to do some maths. After a spot of
giant chess, in which I pose as a knight, we consider some colouring problems.
Daniel recalls FST1 Q2 – which I must be vague about since the paper is not
yet on line, so this will only make sense for those who sat the paper – and
wonders whether an optimal solution is possible with a diagonal pair; the
upper bound required in a solution theoretically allows it. Two 3-colourings
contradict each other nicely, giving the desired result.

Over dinner, Daniel shows us a beautiful problem wherein inversion is
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actually intrinsically useful, rather than simply a reframing of the problem.
This is from Josh Lam on AoPS: AB is the diameter of a circle Γ. P is a
point on AB and Q is a point on Γ such that ∠QPA = 90◦. The largest
possible circle is drawn that fits inside the bisected segment QPB. This is
tangent to AB at G. Show that AG = AQ. The reader is encouraged to
think before checking the answer.11

Sunday 29th April

In which we discuss mathematics, travel to Perga, see a waterfall and visit
the city of Antalya

Today we journey to Perga, or as Geoff refers to it, “Apollonius’s crib”.
Quite how and when he learned jive remains a mystery. The outing will, of
course, disrupt our mathematical investigations, so we get some maths going
very early. In bed before breakfast, I consider the geometry problem from
the plane – points P for triangle ABC with cevians APD, BPE and CPF
such that AF − FB + BD − DC + CE − EA = 0. I attempt to find an
equation for the locus of points that meet the condition given a triangle with
sides a, b and c – P with areal co-ordinates (x, y, z) is effective if and only if

a(z−y)(y+x)(x+z)+ b(x−z)(z+y)(y+x)+ c(y−x)(x+z)(z+y) = 0
which I will mess around with later. Harry observes that the gergonne point
is the symmedian point of the intouch triangle by Gerry’s symmedian proof
from Friday. Over breakfast Daniel explains his fifth solution to question 2,
which I mentioned in yesterday’s report (answer 8) – it uses a remarkable
yet well known factorisation, and I wonder why none of us spotted this in
the exam.
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We do an awful lot of trigbashing, showing that tanA+ tanB+ tanC =
tanA tanB tanC where A + B + C = 180, that sin 2A + sin 2B + sin 2C =
4 sinA sinB sinC and (for posterity, nobody found this useful or non-trivial)
that

3√
a2b2c2 sinA sinB sinC

2 is the area of a triangle.
Geoff gives a cute geometric representation of my identity that sinA +

sinB+sinC ≥ sin 2A+sin 2B+sin 2C for acute triangles (read my solution
to Q2 from yesterday to understand how this fits in). In an acute triangle,
we consider the orthic triangle DEF . Simple trig gives the sides of DEF
as R sin 2A, R sin 2B and R sin 2C, whereas the larger triangle has sides
2R sinA, 2R sinB and 2R sinC – we show that BC ≥ FD +DE cyclically
(by BMO1 Q6 2011) and we’re done. Attention switches to whether this is
also the case for obtuse triangles – my trigonometric proof involves the fact
that sinx increases and cosx decreases as x increases between 0◦ and 90◦,
whereas Geoff’s orthic triangle proof doesn’t hold for more complex reasons
which I won’t detail. Instead, Geoff gives a lovely proof – starting with an
acute triangle (not equilateral) the inequality holds strictly and this triangle
can be transformed continuously until it is any other triangle – the difference
between the LHS and the RHS changes continuously, never crosses 0 (this
would require it to become equilateral) and starts positive, so the inequality
must hold no matter what the triangle. I love this proof as it is incredibly

13



classy and simple, although slightly more work is required to show that an
equilateral triangle is indeed the only one for which equality holds. A safer
proof (also from Geoff) is recorded in the answer section.12

Some thought is given to the pedal triangle and the wonderful formula
for its area based solely on the power of P to the circumcircle. Given P
coplanar with triangle ABC, the area of DEF , where D, E and F are the
feet of the perpendiculars from P , is given by

[DEF ] =
R2 −OP 2

4R2
[ABC]

I remark that a result of this is the well known fact that the feet of
perpendiculars from a point on the circumcircle are colinear. Geoff outlines
a proof that goes over my head.

The trip itself is fairly mediocre, so I won’t bore you with the details,
but let it be known that there was a greek ruins, a waterfall, a restaurant, a
city and a bus.
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There’s surprisingly little time to relax when we return to the hotel, but
enough to play a few games of pool (we observe, in the spirit of a maths
competition, that not all points on the table are coplanar and that not all
points on the cue are colinear, which ruins things somewhat). We also find
out that Salih’s name is not Salih. I make the utterly useless observation
that a triangle and it’s medial triangle’s orthic triangle’s intouch triangle
share a circumcentre.

As I come to this realisation, I begin to experience a stomach ache. I
feel increasingly unwell over the next hour, and the pain builds to complete
agony. Sensing imminent danger, I uncurl myself from a ball-like position
on my bed and assume, as a safety precaution, a more appropriate position
in the necessarium. I re-emerge 10 minutes later having dealt a serious blow
to the toilet’s self esteem. My stomach ache is completely relieved and I fall
asleep very quickly; the only health scare of the trip for any of the UNKs
has passed.

Monday 30th April

In which I almost kill Robin, we play poker and pool, swim, discuss mathe-
matics and find out our marks and medals

Today is completely free. I am awoken at a luxurious 9 o’clock by the
usual pillow to the face. In my half-awoken haze my pillow-throwing response
is less refined than usual and I come close to unhooking a large painting
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from the wall, which would have made my least professional pillow-throw
additionally my most deadly, since Robin is directly below. We breakfast
at the similarly luxurious 9.15, allowing for a not so luxurious 15 minutes
to get dressed, wash and shower. Over breakfast we receive our marks for
question 1 – Matei, Harry and Daniel score 10; Robin makes 8 after being
docked 2 for failing to show that E is the orthocentre. Matthew takes a
respectable 4 after not finishing his proof, and I am surprised to pick up a
mark just for recognising the relevance of the point opposite A over O. This
seems extremely generous considering Geoff’s warning that I may be fined a
mark on Q2 for not showing that the triangle I have constructed is real by
triangle inequalities, despite showing that it is acute. How there could be an
acute triangle that is not a triangle I do not know, but co-ordinators will be
co-ordinators.

After an extensive game of poker, which is admittedly quite boring, we
relax for an hour and then regroup for lunch. Geoff meets us and tells us our
scores for Q2 – 10 for Robin and Matei, the Cranch Expected Score of 0 for
Daniel and Matthew, and 4 for Harry for his substantial progress. My score
is still undecided, and Geoff explains that while it was accepted that very
few acute triangles are not triangles, my final step using the rearrangement
inequality was not symmetrical. The problem was that instead of using
sinA cosB+ sinB cosA ≥ sinA cosA+ sinB cosB as I wrote in this report,
I had foolishly written sinA cosC + sinB cosB+ sinC cosA ≥ sinA cosA+
sinB cosB + sinC cosC and the introduction of the middle variable means
that it doesn’t work cyclically. Luckily, as I find out during a farcical game
of pool, my fine is just 1 mark since rearrangement would work with such a
minor adjustment. As such I have gained an undeserved mark and carelessly
lost one, leaving me on track for my predicted 20 marks – the Lord giveth and
the Lord taketh away (Job 1:21). We await our marks for Q3, which should
be strong – interestingly, we notice that while we all found Q3 easier than
Q2, suggesting that the jury were mistaken to place them in that order, the
marks of other countries prove us wrong. Perhaps the British squad needs
more work on inequalities?

While the swimming pool itself offers little in the way of maths besides
aerodynamics and the mechanics of water slides, the deck chairs are a hub
of discussion over the pinnacle of mathematical challenges – AQA C2. Such
tests of the mind as “given sin θ+cos θ = 0, show that tan θ = −1”. Whoever
defined this as mathematics was wrong. In view of this fact we consider es-
tablishing an A-level in Olympiad mathematics, but eventually decide that it
would be far too hard for the ordinary mathematician. Our scores for ques-
tion 3 arrive – Robin scores 8, Matei 9, and the rest 10 other than Harry, who
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missed Q3. Q4 gives Daniel 10, Matei 4 and Robin and Matthew 1. We’re
all fairly happy with our scores, but predict that each medal boundary will
be precisely 1 above an UNK score. Geoff tells me that my Q3 proved a pain
in the backside again, due to a language issue, but clearly this has been re-
solved without a fine. Attention then turns to whether any interesting OEIS
sequences contain our scores – then we attempt to find a quintic polynomial
p such that p(x) is the score of UNK x for all integer x from 1 to 6. We can’t
be bothered, and it seems that Wolfram Alpha can’t be bothered either. At
this point the patient reader will find out why the report is so long – it is
a trial of patience for our benevolent dictator, James Cranch. If, in fact,
he has read this far, then we congratulate him and apologise for mentioning
that Guernsey FC currently reside in the 9th level of the English Football
League.

We head to the beach, discussing an Advanced Mentoring Scheme prob-
lem involving an infinite number of points in general position coloured green
and black (with at least 1cm between each to avoid a continuum of points) –
we are required to show that in no such colouring can every triangle of green
points contain a black point and vice versa. My proof is a bash, but Matei’s
is gorgeous.13

Seeing that kayaking was closed from 5 o’clock (the time now being 5
past 5) I head back to the poolside, where Gerry is talking about dodgy
teaching of maths at A-level, such as poor definitions of integration and
differentiation, and sloppiness with inequality manipulation. For example,
he solves:
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1

2

n

<
1

1000000

log 1
4

1

2

n

< log 1
4

1

1000000

n <
log 1

4

1
1000000

log 1
4

1
2

which, of course, is wrong (the sign is the wrong way round) – but which
step went awry? log 1

4

1
2 > 0 so no multiplication by negatives has occurred.14

He then integrates f(x) = 1/x between −2 and 5 (tut tut) by limε→0 of
the integral between −2 and −ε plus that between ε and 5 (defining ln−x
correctly). Using 4ε, or rε ∀ r ∈ R in the positive version gives a different
result, which explains part of the definition of differentiability – that

lim
ε→0

f(x+ ε)− f(x− ε)
2ε

= lim
ε→0

f(x+ rε)− f(x− ε)
(1 + r)ε

∀ r ∈ R

or something along those lines.
Finally he completes the sequence 3, 0, 0, 4, 2, 0 with 12. Genius.
Robin and I have another hack at least year’s inequality – for x+y+z = 0:∑

cyc

x(x+ 2)

2x2 + 1
≥ 0

To my shame, I multiply by the denominators and expand out, but this
doesn’t help. I try substitutions which also fail. Although I do not solve
the problem on the trip, I have more success a few days after getting home
– see the half-cooked answer below.15 We spend the evening playing lots
of pool, even more table tennis and a ridiculous amount of maths. At the
centre of attention, among several other integer series with little founding in
traditional mathematics, is this ghastly thing:

1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 1, 1, . . .

in which each number is found by counting the number of full repetitions
of the longest repeating sequence finishing on the previous number, starting
with 1. With f(n) defined as the term of the above sequence at which n

18



first appears (so f(1) = 1, f(2) = 3, f(3) = 9 and so on) it is agreed that
f(n) grows rapidly. Very rapidly. Matei conjectures that 10 has not been
reached by term G, where G is Graham’s number (whose best approximation
is the number of rooms in our hotel, although it may be slightly greater if
we’re being honest). I agree that f(10) is large, but not that large. This
dispute is quickly settled when Harry corrects Matei’s definition of Graham’s
number, which was too small by a factor of roughly Graham’s number (for
anyone who cares, Matei is thinking about g(1), and Graham’s number is
g(64), so Matei is out by at least 63). Geoff and Gerry finally appear with
the medal boundaries – 30 is Silver, 20 is Bronze and Gold is 39 due to the
relatively easy paper. This means that Daniel and Matei take Silver, and
Robin and I Bronze. Contrary to our expectations, two of us land luckily on
a medal boundary, whereas we suspected that multiple UNKs would fall a
point shy. I note that giving each team member a number between 1 and 6
according to relative rank, all three bedrooms add to 7. Further, in reverse
order of UNK, each value oscillates towards 3.5 – 6, 1, 5, 2, 4, 3. These two
are closely related, as rooms were assigned alphabetically, and so were UNK
numbers. Just before bed, Robin explains a fantastic trig identity – for a
triangle ABC, there is a point P (the Brocard point) such that ∠PAB =
∠PBC = ∠PCA = ω, and for this point cotA + cotB + cotC = cotω,
which is impressive.

Tuesday 1st May

In which we discuss mathematics, relax on a boat, attend the closing cere-
mony, escape from the closing gala and write Salih a letter

Today is our last full day, and our second road trip – or rather, sea trip –
we will spend the day on a boat. As we congregate outside reception to board
coaches to the harbour, Daniel, Robin and I tackle the cotangent/brocard
point problem (as well as its corollary that ω ≤ 30◦).16

We consider the inequality from Balkans 2010:∑
cyc

a2b(b− c)
a+ b

≥ 0

I solve this the predictable, reliable and fast way.17 Daniel, as usual, puts
my method to shame18 (I advise that you take a look). Despite the beauty
of Daniel’s solution, I do not regret doing what I did. It is efficient, it is
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safe and it is easy. I see no reason to bother with beautiful solutions to ugly
inequalities. They are horrible, and deserve to be hit around the head with
a machete, and that’s what I endeavour to do. In the spirit of this entire
event, geometry quickly becomes the main subject of the day (at this point
we are on a boat cruising through the extraordinarily blue mediterranean).
Gerry sets a problem involving an orthogonal tetrahedron with ∠ABC =
∠CBD = ∠DBA = 90◦ – show that [ABC]2+[CBD]2+[DBA]2 = [ACD]2.
This yields to a quick bash. Geoff then sets two problems – first, of a
regular tetrahedron ABCD with any point P on its circumsphere – show
that AP 4 +BP 4 +CP 4 +DP 4 is fixed. The second involves a triangle with
incircle Γ. The tangent to Γ parallel to BC meets AB at A1 and AC at A2;
B1, B2, C1 and C2 are defined similarly. It is required to prove that∑

cyc

AA1 ·AA2 ≥
a2 + b2 + c2

9

These two prove more difficult, but we are soon joined in our quest by a band
of Romanians and Turks with an average BalkMO score of 40. I am proud
to show them something they don’t know – Matei’s factorising triangle. The
second is quickly dealt with but the first is still on the table as the team is
disbanded by an enormous waterfall.

Over lunch, Geoff reveals his motives – he has been demonstrating the
useful nature of the Huygens-Steiner theorem, which he asserts can solve
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anything which involves even powers of lengths. He then explains what
Huygens-Steiner is (this is the second time I’ve heard an explanation of
Huygens-Steiner and I am beginning to feel as though after five more expla-
nations I will understand it). Although the first solves itself in co-ordinates
and the second can be tackled with plane euclidean geometry, I will omit
these proofs because the point of the exercise was to use Huygens-Steiner,
and I cannot write up a Huygens-Steiner proof because I don’t understand
Huygens-Steiner. The conversation flips to useless geometry, and Geoff men-
tions Adam Goucher’s favourite – the product of the four tritangential radii
is the square of the area. In other words,

[ABC]2 = r · rA · rB · rC

This is proved with Heron. I also realise that ABC is the orthic triangle
of IAIBIC – a pleasing but even more useless result. Gerry shows us a nice
trick – writing Pascal’s triangle mod 2 and reading each row as an integer in
binary, we get the sequence 1, 3, 5, 15, 17, 51, 85. . . which is the sequence
of constructible n-gons up to multiplication by a power of 2.

Unfortunately the boat ride must end and we are forced from the cool
sea onto stifling buses with little air-con. Luckily, Gerry is always a source
of fascinating maths, and he teaches me about ordinals, ω, ε0 and transfinite
induction. Some of it goes over my head, but what I understand, I really
enjoy. I won’t go into detail here, but I recommend that the reader ask Gerry
for some very nice observations. Orders of ω2, ω3 and ωn are not too hard
to find, but ωω proves more difficult. Eventually, Matei identifies one: in the
continuing sequence

a1 +
1

a2 + 1
a3+

1

a4+
1
...

Where an starts at 0, ak is increased to infinity followed by a repeat with
ak+1 increased by 1, starting with k = 1. Jumping ahead to Gatwick on
the way home I find another – the integers are ordered “alphabetically”, so
in order of first digit, followed by second and so on, with the decimal point
(these are integers so I mean the end of the integer) its own character.

The closing ceremony is brief and non-mathematical – most notably, I
hold up my union flag incorrectly and we observe that the flag has rotational
but not reflective symmetry, making our flag unique among those on show.
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Moreover, Geoff gives a moving speech on the importance of volunteerism
in the mathematical community. After the ceremony we have time for several
games of pool before the closing gala. These games are all fairly mediocre,
but we manage a trick shot or two.

The closing gala involves food we didn’t order, music we can’t stand
and a conversation we can’t hear, due to the ridiculous volume of the music
(see Geoff’s report for a more livid account). Nevertheless Matei and I
manage some maths, looking at the locus of points for any triangle ABC
such that the cevians through P meet opposite sides at D, E and F with
AF − FB + BD − DC + CE − EA = 0 – the condition from the plane
journey. Our expressions cannot be factorised, so we’re still in limbo here.
Among other loci I have been contemplating is the locus of points for all
r ∈ R with perpendicular heights from each edge x, y and z that minimise
xr + yr + zr. Finally we write Salih a goodbye card, which contains various
rubbish limericks such as the following (by myself):

There once was a person from Turkey,
This limerick just doesn’t work-ey.
He was very cool,
But avoided the pool;
We thank you for being so perky.
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Wednesday 2nd May

In which we journey home, discuss mathematics, Daniel learns German, we
say our goodbyes and are reunited with our families

We wake, pack and breakfast without much maths, say our goodbyes and
hop on the coach. The trip to the airport is quiet – we discuss some geometry
but are generally more reflective. The airport is empty, and we move onto
the plane quickly (at the gate Geoff has time to explain the role of the jury in
a maths competition). On the plane, I teach Daniel some German (the flight
is Airberlin so we have plenty of German to read) and continue work on our
various problems. A lot of what I’ve described as ‘solved later’ throughout
this report is achieved on these flights, and Matei manages to come up with
a rough shape for the locus we have been looking at (for scalene triangles).
I will not attempt any ASCII art to reproduce the diagram; you can do it
yourself, you lazy frog. Were we a less serious bunch, our goodbyes may
have been more animated, but they were moderately heartfelt nonetheless.
More upsetting, as we realised upon being reunited with our parents, was
the prospect of having to tidy our own rooms.

Remarks

I’d like to thank Geoff, for fighting our corner with the co-ordinators;
Gerry, for keeping an eye on us and supplying us with many problems;
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UKMT, for coughing up so much money; Bev, for organising everything;
Tübitak, the Turkish government’s science trust; the hotel, for feeding us
with wonderful nourishment and providing us with such luxuries as a pool,
cleaners and loo roll; and most of all, Salih the GUNK (Guide for the UNited
Kingdoms) who was helpful, caring, funny, friendly and knowledgeable, and
with whom I shared many a conversation consisting solely of quoting Shake-
speare, Milton and Leonard Cohen.

Disclaimer: literally no effort was made whatsoever to make this report
truthful in any way, shape or form. If you find a factual error, please write
your correction on A4 paper along with your contact details and put it in the
bin.

Appendix
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Competitors from the UK

# Name Q1 Q2 Q3 Q4 Total Award
1 Robin Elliott 8 10 8 1 27 Bronze
2 Gabriel Gendler 1 9 10 0 20 Bronze
3 Daniel Hu 10 0 10 10 30 Silver
4 Matthew Jasper 4 0 10 1 15 Honerable* Mention
5 Matei Mandache 10 10 9 4 33 Silver
6 Harry Metrebian 10 4 0 0 14 Honerable* Mention

*Honerable is the spelling used on the certificate

Answers

1 – Suppose, for a contradiction that such a function exists (call it f), so
f : R→ R\Q and f−1 : R\Q→ R. The domain of f−1 is the disjoint union
of P and −P , where P is the set of positive real numbers which are not
rational. Since f preserves order, so does its inverse, so the sets f−1(−P )
and f−1(P ) are a Dedekind cut of the reals – either f−1(−P ) contains a
maximum element or f−1(P ) contains a minimum element, implying that
either P or −P has a minimum or a maximum respectively, which is absurd.

2 – the answer is not, as some might suggest, the Cantor set. While
the Cantor set does cover an infinitely small interval, when it is applied
over an area one third the size it’s interval reduces by a half, so the guests
could still feel crammed. Instead, use an interlacing – assign each bus a real
number between 0 and 1 ( 1

2n will do), assign each passenger on the bus a real
number between 0 and 1, write out the binary expansion and interlace the
two sequences (e.g. if one begins 0.01101110. . . and the other 0.00011011. . .
the end result will be 0.0010100111101101. . . ) since just ℵ0 of the first real
numbers are needed, the resulting rooms never form an interval at all, so
nobody feels crammed.

3 – Gerry labels D on AB such that DT = BT and B 6= D. Now
DT = BT = CT . DT is extended to meet AC at E. He notes that
∠BCA = ∠TBA by the alternate segment theorem (note that the use of
directed angles renders this true rather than that ∠TBA + ∠BCA = 180◦

which is wrong). ∠TBA = ∠TBD and ∠TBD = ∠BDT since 4BDT is
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isosceles, so ∠BCA = ∠BDT . Therefore 4ABC and 4AED are similar,
although mirrored, and ∠TEC = ∠ABC. But ∠ABC = ∠ACT by the
alternate segment theorem, and ∠ACT = ∠ECT . Since ∠ECT = ∠TEC,
TE = TC. Since TC = TB = TD, TE = TD, so T is the midpoint of DE.
Recall that 4ABC is similar to 4AED, so 4AMC is similar to 4ATD
and ∠TAD = ∠CAM – QED.

4 – Harry labels point G at the intersection of AO and `. M is the
midpoint of AB. 2∠ACB = ∠AOB = 2∠AOM so ∠ACB = ∠AOM , and
∠AMO is trivially 90◦ so ∠AOM = 90◦ − ∠MAO = 180◦ − ∠DGA −
∠DAG = ∠ADG, so ∠BDE = ∠BCE. Therefore BDCE is concyclic, and
since ∠DCE = 90◦, ∠EBD = 180◦ − 90◦ = 90◦. Since A, C, F and B are
on Γ, ∠ACF + ∠FBA = 180◦, so ∠FBA = 180◦ − ∠ACF = ∠ACD −
∠ACF = ∠FCD. Then let the midpoint of EF be N and that of FD be
P . Let the circumcentres of ∠EBF and ∠FCD be O1 and O2 respectively.
Then 2∠FBE = ∠FO1E = 2∠FO1N . Similarly 2∠FBE = 2∠FCD =
∠FO2D = 2∠FO2P and FO1N = FO2P . Since O1N is perpendicular to `,
which in turn is perpendicular to PO2, O1N is parallel to O2P and by the
converse of alternate angles O1FO2 is collinear and we’re home and dry.

5 – Robin expands out the a, b, c inequality for

a2bc+ ab2c+ abc2 ≥ 2a2b2 + 2b2c2 + 2a2c2 − a4 − b4 − c4

Then he move the fourth powers to the LHS and requires to prove that:

a2bc+ ab2c+ abc2 + a4 + b4 + c4 ≥ 2a2b2 + 2b2c2 + 2a2c2

Now he cites Schur’s inequality (
∑

cyc x
t(x− y)(x− z) ≥ 0) with t=2:∑

cyc

a2(a− b)(a− c) ≥ 0

which expands out to

a4 + b4 + c4 + a2bc+ ab2c+ abc2 ≥
∑
sym

a3b

The LHS is the LHS of his RTP (required to prove) inequality. Now it
suffices to show that:

26



∑
sym

a3b ≥
∑
sym

a2b2

Which yields trivially to Muirhead.

6 – Noting that a+ b > c and so on, I consider the triangle with sides of
length a, b and c. The inequality at hand is

a2bc+ ab2c+ abc2 ≥
∑
cyc

(a2 + b2 − c2)(a2 + c2 − b2)

Now by the cosine law a2 + b2 − c2 = 2abcosC, so this becomes

a2bc+ab2c+abc2 ≥ 4a2bc cosB cosC+ 4ab2c cosA cosC+ 4abc2 cosA cosB

The area of a triangle (which I call 4) formula gives 24/ sinC = ab
and so on, so after this substitution, division by 442 and multiplication by
sinA sinB sinC I get

sinA+sinB+sinC ≥ 4 sinA cosB cosC+4 sinB cosA cosC+4 sinC cosA cosB

The RHS is rewritten as∑
cyc

2 sinA cosB cosC+2 sinB cosA cosC = 2
∑
cyc

cosC(sinA cosB+sinB cosA)

sinA cosB + sinB cosA = sin(A + B) by the compound angle formula,
and sin(A+B) = sin(180−A−B) = sinC, so the RHS is just∑

cyc

2 sinA cosA

This is the double angle formula, so I am required to prove:

sinA+ sinB + sinC ≥ sin 2A+ sin 2B + sin 2C

Now I recall that 4ABC is acute, so for any A ≥ B, 2 sinA ≥ 2 sinB
and cosA ≤ cosB. Hence by the rearrangement inequality

2(sinA cosB + sinB cosA) ≥ 2 sinA cosA+ 2 sinB cosB
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2 sinC ≥ sin 2A+ sin 2B

Taking the sum of this inequality cyclically and dividing by 2 gives

sinA+ sinB + sinC ≥ sin 2A+ sin 2B + sin 2C

as required.

7 – x+ y ≥ 2
√
xy (by simple AM-GM)

(x+ y)z ≥ 2z
√
xy

(multiplying by z)

z2 + (x+ y)z + xy ≥ z2 + 2z
√
xy + xy

(adding z2 + xy)

(z + x)(z + y) ≥ (z +
√
xy)2

(factorising)

√
z + x

√
z + y ≥ z +

√
xy

(rooting)

(x+ y)
√
z + x

√
z + y ≥ (x+ y)(z +

√
xy)

(multiplying by (x+y)).

This applies cyclically, so:

LHS ≥
∑
cyc

(x+ y)(z +
√
xy)

LHS ≥ 2
∑
cyc

xy +
∑
cyc

(x+ y)
√
xy

Since x+ y ≥ √xy by AM-GM
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LHS ≥ 2
∑
cyc

xy + 2
∑
cyc

√
xy
√
xy

LHS ≥ 4
∑
cyc

xy

LHS ≥ RHS as required.

8 – Daniel starts with the standard a, b, c substitution, then expands out
the RHS, factorises the LHS and requires:

(a+ b+ c)abc = 2
∑
cyc

a2b2 −
∑
cyc

a4

like Robin. The RHS factorises to (a+ b+ c)(a+ b− c)(a+ c− b)(b+ c− a),
so for a triangle with sidelengths a, b and c,

2abc(a+ b+ c)/2 ≥ (a+ b+ c)(a+ b− c)(a+ c− b)(b+ c− a)

The RHS is Heron’s formula squared multiplied by 16, so

2abc(a+ b+ c)/2 ≥ 1642

We write one 4 as abc
4R and the other as rs, so

2abcs ≥ 16
abcrs

4R

Which simplifies to
R ≥ 2r, Euler’s inequality.

9 – Matthew will prove by induction, first showing that for any given n,
n+ 1 also works and then looking at the base case when n = 1.
Pn is good from a to b if:
∀a ≤ y ≤ b ∃Y ⊆ Pn such that 0 ≤ y − SY ≤ 2n

If Pn is good from 0 to 3n+1 − 2n+1 then it’s great.
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Claim 1: ∀Pn SPn = 3n+1 − 2n+1

Proof: I did this by induction but since I did MPC2 yesterday and I like
geometric series:

SPn = a1−rn+1

1−r = 2n
1− 3

2

n+1

1− 3
2

= 3n+1 − 2n+1.�

Claim 2: ∀ great Pn , ∃ U0, U1, U2, . . . , Um Ui ⊆ Pn such that SUi are
increasing U0 = ∅ , Um = Pn and SUj − SUj−1 ≤ 2n ∀0 < j ≤ m.
Proof: Only the final condition needs to be proved as all can be made to be
true or have been shown before. Suppose y = SUj − 1 then y − SUj−1 < 2n

and SUj − 1− SUj−1 < 2n.
LHS is an integer so SUj − SUj−1 < 2n.�

Claim 3: This is also a sufficient condition for Pn being great
Proof: Let SUj−1 ≤ y < SUj , which can be true for all relevant y. Subtract
SUj−1 : 0 < y−SUj−1 < SUj−SUj−1 and it follows that 0 ≤ y−SUj−1 ≤ 2n.�

Claim 4: Pn−1 is great implies Pn is great. n ≥ 2
Proof: Let X0, X1, . . . Xm be the list of subsets describe above for Pn−1. Let
V0, V1, . . . Vm be subsets of Pn with elements twice that of corresponding X
and let W0,W1, . . .Wm be the same subsets but also containing 3n.
Now:
9 · 3n−2 − 8 · 2n−2 > 0(n ≥ 2)
2 · (9 · 3n−2)− 8 · 2n−2 > 9 · 3n−2
2 · (3n − 2n) > 3n

2 · (SXm) > 3nP
SVm > SW0

This means the set containing all Vi and Wi is suitable to show Pn is good
because differences of sums is twice that of Xi which is suitable and the two
sets have sums covering the whole range of y and overlap so this makes Pn

great.�

Finally note P1 is great:
∅, {2}, {3}, {2, 3} ⊆ Pn

and give values of SY 0,2,3,5. which shows P1 is great (0 ≤ y ≤ 32− 22 = 5)
and by induction all Pn are great.�

10 – Daniel starts by supposing that the function is eventually constant.
Then f(n) = k for all n ≥ n0, for some constant k.
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We prove by downwards induction that f(n) = k for all n. If n0 > 1 then
n0 ∈ Z+. If n0 − 1 ≥ 3, then k = f((n0 − 1)!) = f(n0 − 1)! as n0 − 1 > n0
for all n0 − 1 ≥ 3. We also have f(n0!) = k since n! ≥ n ∀ n, so f(n0)! = k.
Moreover f(n0) = k so f(n0)! = k!, so k! = k. We have k = f(n0 − 1)!, so
k! = f(n0 − 1)!, k = f(n0 − 1) which contradicts the definition that n0 is
the lowest number such that f(n) = k ∀ n ≥ n0. Therefore n0 − 1 ≥ 3 is
impossible, so n0 − 1 < 3, so n0 − 1 is 1 or 2. Therefore (n0 − 1)! = n0 − 1,
so f(n0 − 1)! = f(n0 − 1) so f(n0 − 1) is 1 or 2.

By the second rule, f(n0+1)−f(n0−1) is a multiple of 2. f(n0+1) = k,
so k ≡ f(n0 − 1) (mod 2). Moreover both k and f(n0 − 1) are 1 or 2, and
1 6= 2 (mod 2), k = f(n0 − 1). Therefore the assumption that n0 > 1 was
wrong, but n0 ≥ 1 so n0 = 1 – in other words, if the function is eventually
constant it must be constant throughout. f(n) = k ∀ n where k is 1 or
2. Both are trivially solutions, so we have all such functions where f(n) is
eventually constant.

If f is not eventually constant, the ∀ n, ∃k ∈ Z+ such that f(n + k) 6=
f(n). We have

f((n+ k)!)− f(n!)

(n+ k)!− n!
=
f(n+ k)!− f(n)!

(n+ k)!− n!
∈ Z

Suppose for contradiction that f(n) < n for some n. However, n < n+k
so a · n! = (n+ k)! for some a ≥ n+ 1. Therefore (a− 1)n! = (n+ k)!− n!,
so n! | (n + k)! − n!. (n + k)! − n! | f(n + k)! − f(n)! by the second rule
so n! | f(n + k)! − f(n)!. f(n + k)! − f(n)! 6= 0 since f(n + k) 6= f(n) by
definition. Therefore either f(n+ k)!− f(n)! ≥ n! or it is negative.

If f(n + k)! − f(n)! is negative, it is at least −f(n)! since f(n + k)! is
positive. Moreover it is at most −n! since it divides n!, so −f(n)! ≤ −n!,
which implies that n! ≤ f(n)!, so n ≤ f(n) which contradicts our definition.
Hence f(n+ k)!− f(n)! ≥ n!, so f(n+ k)! > n!, so f(n+ k) > n. Therefore
n! | f(n+k)!, but also n! | f(n+k)!− f(n)!, so n! | f(n)! which implies that
n ≤ f(n) – contradiction.

Therefore f(n) ≥ n ∀ n. As we saw in the case where f(n) is eventually
constant, f(2) = f(2!) = f(2)! so f(2) is its own factorial, so f(2) is 1 or 2.
However since f(2) ≥ 2, f(2) = 2.

Now suppose there exists n ≥ 3 such that f(n) ≥ n!− 2. Since

f(n!)− f(2!)

n!− 2!
∈ Z

f(n!)− 2

n!− 2
∈ Z.
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n!− 2 ≤ f(n) so n!− 2 | f(n)!, which implies from the two divisibilities that
n!− 2 | 2. However, n > 3, so n!− 2 > 2, contradiction. Therefore ∀ n ≥ 3,
f(n) ≤ n!− 3 – so f(3) ≤ 3!− 3 = 3. f(3) ≥ 3, so f(3) = 3.

f(1) = f(1!) = f(1)! so f(1) is 1 or 2, but by the second rule f(3) ≡ f(1)
(mod 2), so f(1) ≡ 1 (mod 2) and f(1) = 1.

So we have:
f(1) = 1
f(2) = 2
f(3) = 3
∀ n, n | n! − n, and n! − n | f(n!) − f(n), so n | f(n)! − f(n). Now

f(n) ≥ n, so n | f(n)!. Hence n | f(n).
We now use induction to show that f(n) = n ∀ n. We know this is true

when n is 1, 2 and 3 as our base cases. We suppose that f(n) = n ∀ n ≤ k
for some k ≥ 3. Then

f(k + 1)!− f(k!)

(k + 1)!− k!
∈ Z

Hence

f(k + 1)!− k!

(k + 1)!− k!
∈ Z

since f(k!) = f(k)! = k!. The denominator is (k+ 1)!−k! = (k+ 1)k!−k! =
k(k!), so

f(k + 1)!− k!

k(k!)
∈ Z

Suppose for a contradiction that f(k + 1) ≥ 2k – then (2k)! | f(k + 1)!
and as k | 2k and k! | (2k− 1)!, k(k!) | 2k(2k− 1)!, so k(k!) | 2k!, and k(k!) |
f(k+ 1)!. Therefore from the two divisibilities, k(k!) | k! but k(k!) > k! > 0,
so this is a contradiction. Therefore f(k + 1) < 2k. k + 1 | f(k + 1) from
above, so k+1 ≤ f(k+1) < 2k, and the only multiple of k+1 in this interval
is k + 1. Hence k + 1 = f(k + 1) and induction is complete. Therefore the
only f which suits the conditions and which is not eventually constant is
f(n) = n. This works trivially, so the three solutions are f(n) = 1, f(n) = 2
and f(n) = n.

11 – Invert the plane about A, with radius AQ. It is not hard to show
that Γ′ is the line PQ, and vice versa. Hence B′ is P and P ′ is B. The new
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circle must also be in exactly the same place, so it is tangential to ∞′B at
G′, which is also G. Hence G = G′ and AG = AQ.

12 – we start with 2R = a
sinA . Multiplying by sinA and adding up

cyclically gives:

2R(sinA+ sinB + sinC) = a+ b+ c

Then multiplying by r
2

Rr(sinA+ sinB + sinC) = rs = 4

4 = R2

2 (sin 2A+ sin 2B + sin 2C), so:

Rr(sinA+ sinB + sinC) =
R2

2
(sin 2A+ sin 2B + sin 2C)

r(sinA+ sinB + sinC) =
R

2
(sin 2A+ sin 2B + sin 2C)

Euler tells us that r ≤ R
2 , so

r(sinA+sinB+sinC) =
R

2
(sin 2A+sin 2B+sin 2C) ≥ r(sin 2A+sin 2B+sin 2C)

sinA+ sinB + sinC ≥ sin 2A+ sin 2B + sin 2C

and in the words of the great József Pelikán, we are ready.

13 – take any five points forming a convex pentagon, and consider the
set of points inside the pentagon, include the 5 that form the convex hull.
Let the number of black points be b and the number of green points be g.
The black points form a b-gon, which can be triangulated into b−2 triangles,
so there are at least b − 2 green points inside of the convex hull. Similarly
there are at least g − 2 blue points inside of the convex hull, and a total of
at least b+ g − 4 points inside of the convex hull. Including the convex hull
of 5, there are at least b + g + 1 points, but by definition there are b + g –
contradiction.
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14 – taking everything log1/4 reverses the inequality, since it is a de-
creasing function. This demonstrates the fact that multiplication by −1 and
finding the reciprocal are not the only functions that reverse the sign – they
are just two cases of the general rule that applying a decreasing function
changes the sign. This fact, while intuitive, seems to be skipped in schools.

15 – I start with a mental catechism (really, it helps).
Me: Why is this problem difficult?
Me: It doesn’t allow for heavy machinery such as Muirhead’s.
Me: Why doesn’t it respond to Muirhead’s?
Me: Because different terms have different orders – the expression is not

homogeneous.
Me: How can these orders be adjusted?
Me: If an identity in x, y and z exists with different orders on the two

sides.
Me: Does such an expression exist?
Me: No, because x+ y + z = 0.
Me: Wait a second – if x+ y+ z = a for some non-zero constant a, we’re

sorted, right?
Me: Right – we could multiply everything with lower order by (x+y+z)/a

repeatedly, increasing the order indefinitely.
Me: Great!
Me: But x+ y + z = 0.
Me: But (x+ 1) + (y + 1) + (z + 1) = 3. . .
Me: Oh, I see – we substitute in t = x+ 1, u = y + 1 and v = z + 1 and

we can make it homogeneous.
Me: And then we can bash it!
Me: The expansion would involve over 900 terms.
Me: Fine, but at least I have a way of solving it.
Me: You don’t know it will work.
Me: Five pounds if it works.
Me: Who does the expansion?
Me: Nobody needs to do the expansion.
Me: Why not?
Me: Because we have the same wallet, you and I, so whoever is wrong

may as well have just transferred the money.
Me: Well, whichever way it is, I just picked up a fiver, so I’m going to

Tesco to buy a celebratory chocolate bar with my hard earned cash.
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16 – Daniel takes us halfway by identifying several similar triangles found
by drawing cevians through P and hence finding an expression that doesn’t
look far off what we’re required to prove – that

1

sin2A
+

1

sin2B
+

1

sin2C
=

1

sin2 ω

The reciprocal of the sine is the cosecant, and the square of the cosecant
is 1 more than the cotangent, so we have

cot2A+ cot2B + cot2C = cot2 ω − 2

Bear this equation in mind for a moment. We know that tanA+tanB+
tanC = tanA tanB tanC; dividing this by its own RHS and multiplying by
two gives

2
∑
cyc

cotA cotB = 2

Adding this equation to the earlier one gives∑
cyc

cot2A+ 2
∑
cyc

cotA cotB = cot2 ω

Square rooting gives the desired inequality.
Jensen’s (along with some differentiation) gives the corollary.

17 – Multiply away the denominators and expand to require∑
cyc

a3b3 −
∑
cyc

a3b2c ≥ 0

∑
cyc

a3b3 ≥
∑
cyc

a3b2c

Which yields to rearrangement with sets {a2b2, a2c2, b2c2} and {ab, ac, bc}.

18 – Dividing by abc, Daniel requires∑
cyc

a(b− c)
c(a+ b)

≥ 0
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He now adds 3. Wow. ∑
cyc

a(b− c)
c(a+ b)

+ 1 ≥ 3

∑
cyc

b(a+ c)

c(a+ b)
≥ 3

Which is AM-GM since the terms multiply to 1.
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