26th INTERNATIONAL MATHEMATICAL OLYMPIAD

Finland, July 1-11, 1985

Introduction

38 countries participated, Luxembourg, Mexico and Venezuela were absent,
China (2), Iceland (2) and Iran (1) appeared for the first time and India sent
an observer. The other teams with less than the maximum 6 competitors were Italy (5),
Kuwait (5), Spain (4) and Tunis (4).

Thus there were 209 competitors from 38 different countries. About a dozen were
girls.

The Choice of Problems

On June 29, two days before the teams arrived, the leaders met in Heinola as a
Jury in order to decide the six problems of the competition. Several weeks before,
each country had sent up to 5 problem-proposals to Finland. From these a selection
of 6 first choices and further second choices had been made by the Finnish problem—
selector for the Jury to consider.

In recent years some countries have felt that the range of mathematical knowledge
required was too limited and the Finnish problem-selector had asked for a wider range
of proposals. Three of the five problems submitted by G.B. involved knowledge of co-
ordinate geometry applied to 1) plane similarity transformations, 2) the constant
sum of focal distances in an ellipse and 3) two versions of a partitioning problem,
one couched in the language of probability. None of these was selected for the con-
sideration of the Jury. One 'traditional' G.B. problem was a second choice and the
other was later produced when other geometry problems had been discarded, and finally
selected as Question 1.

After the problem—papers had been decided, the problem-selector issued a pamphlet
containing all proposals received with their solutions. It is evident from these
proposals and discussion in the Jury that although some are in favour of reducing
school geometry, particularly 3-D, and a few for introducing items in newer school
syllabuses, most are content with the status quo.

Leaders come to the IMO having spent time (in some cases considerable time)
training their teams and they are not going to vote for problems which seem to them
outside the unwritten IMO syllabus. Should perhaps notice be given by host countries

that proposals involving say complex numbers, coordinate geometry applied to curves and
surfaces other than the circle and sphere, probability, etc. etc., will be accepted,

or is this not worth while because such proposals will be voted down by the Jury?

The tradition is that the first and last of the 3 questions set on each of the
two days should be 'easy' and 'difficult' respectively. Q3 proved to be the most
difficult but it was fair in the sense that familiarity with binomial coefficients
is to be expected and the difficulty lay in constructing a proof.



On the other hand Q6 involved the idea of nested intervals - two sequences
converging to the same limit from above and below. It was a very nice question but
comparatively easy for those whose approach to analysis starts after school with
such ideas rather than as in G.B. with 'engineering' calculus in school. The U.S.
leader had done no preparation in analysis of this sort in his 3-week training
session and attributed the U.S. success (40/42) in this question to the fact that
many U.S. universities hold week-end conferences for promising youngsters and a
favourite lecture is on first year analysis, strange functions, etc.

Many of the leaders are university lecturers or professors in pure mathematics
and much against 'calculus' being done in schools where the intricacies of limiting
processes cannot be 'properly' explained. No doubt they expected that such ideas
might be known or discovered by the abler pupils in their teams, as I did (cf. Area
under a curve lying between the sum of upper and lower rectangular areas).

Of the two geometry questions Ql and Q5, Ql could be solved (inelegantly no
doubt) by almost any sensible approach (e.g. using trigonometry). Q5 was chosen
after an excellent 3-D polyhedron problem had been rejected and a substitute on
vectors rejected as too easy. Eventually Q5 with its unnecessarily hard official
solution was selected. (In fact both Ql and Q5 were solved by G.B. competitors using

no more than angle properties of quadrilateral and circle). From table 2, it can be
seen that some leading countries find geometry difficult.

Q2 (combinatorics) and Q4 (prime factorisation and the pigeonhole principle)
were both accepted without controversy.

The Competition

On July 4 and 5 the competition (4} hours each morning) took place in Joutsa
where the deputies and teams had been housed since July 1. On July 5 the leaders
left Heinola for Joutsa and were no longer held incommunicado from their teams.
Deputies and leaders marked and submitted the scripts for each question to the
Finnish co-ordinators for that question. The size of IMO is now such that each

question has two pairs of co-ordinators and two days passed before all co-ordination
was ended. Table 1 shows the British competitors, their marks and prizes and Table 2

shows the marks per question of those 14 countries whose total marks exceeded 100.

The remaining countries are those named in paragraph 1 and the following:

Brazil, Israel, Austria, Cuba, Netherlands, Greece, Yugoslavia, Sweden, Mongolia,
Belgium, Morocco, Colombia, Turkey, Algeria, Norway, Cyprus and Finland.



Table 1

Question 1 2 3 4 5 6 Total Prize
C. Kilgour King's School, Gloucester 7 o o 2 2 1 12
J. Longley Portsmouth Grammar School 7 7 O 2 0 oO 16 I11
M. Moore Manchester Grammar School 7 7 3 0 0O ©O 17 I1I
M. Richards Millfield School 7 7 1 7 7 3 32 I1
A. Selby City of London School 7 7 o0 2 0 1 17 II1
I. Stark Winchester College 7 7 2 4 7 O 27 I1

42 35 6 17 16 5 121

Average mark for a team of six 25 22 5 15 11 12 90

George Megyesi of Atlantic College, Glamorgan was chosen for the Hungarian team.
He shared first prize in the British Mathematical Olympiad with Matthew Richards

and got one of the two perfect scores (Ian Stark got the other) in our multiple-
choice National Mathematics Competition. His mark in IMO was 38. Only 2 competitors
(another Hungarian and a Romanian) did better, each getting the maximum 42.

Table 2
Prizes
Question 1 2 3 4 5 6 Total I II III

1 Romania 42 42 16 35 32 34 201 3 3

2 United States 28 38 34 30 10 40 180 2 4

3 Hungary 42 31 17 30 23 25 168 2 2 2
4 Bulgaria 42 35 10 22 33 23 165 2 3

5 Vietnam 42 35 2 25 28 12 144 1 4

6 Soviet Union 28 42 21 14 15 20 140 1 2 2
7 West Germany 25 41 16 26 8 23 139 1 1 4
8 East Germany 36 35 11 19 10 25 136 3 3
9 France 15 42 1 24 13 30 125 2 3
10 Great Britain 42 35 6 17 16 5 121 2 3
11 Australia 34 33 7 19 10 14 117 1 1 2
12= Canada 30 42 2 15 9 7 105 1 4
12= Czechoslovakia 22 31 1 15 14 22 105 3 1
14 Poland 33 35 1 4 11 17 101 1 4

The remaining 24 countries scored less than 100 marks,
Belgium (total score 60) had a first prize winner.

Soviet Union's first prize winner was a girl.



The British Team

Their overall performance was disappointing. Matthew Richards was unlucky
not to get a first prize. First, second, third and no prizes have commonly been
given in the ratio 1:2:3:6. This year only 14 first prizes were given and Richards

had the highest mark not to get a first prize.

There were several ingenious attempts and David Monk spent some time trying to

'rescue' solutions which proved to be too unsound for the co-ordinators to allow
few if any marks.

We noticed rather more obscurity in presentation than in previous years.
Some of the team obviously had an off-day and did not do themselves justice. Two
British solutions were put up for special prizes but were not considered 'special'
or striking enough. No special prizes were given this year.

The six British competitors were a very pleasant lot. They got on well with
each other and with their English-speaking rivals. They enjoyed themselves and
did not let their disappointments get them down.

Non-Mathematical Matters

We are very grateful to our Finnish hosts, not only for the excellent organ-
isation of the Competition, but for the programme of sightseeing, informal games,
football, tennis, boating, swimming, saunas, picnics and concerts, all contributing
opportunities for 'friendship between the young of 38 nations'. Teams had young
Finnish students as attachés and our attachée was very helpful indeed looking after
our general interests,keeping us up to the mark and overcoming language difficulties.

On the last evening various countries contributed to an informal variety show.
Our team sang two Swan-songs.— 'The English are Best' and 'Mud, mud, Glorious Mud.'

The Future

At the last meeting of the Jury, John Hersee, Secretary of the IMO Site
Committee, told us that future host countries were — 1986, Poland: 1987, Cuba:
1988, Australia. Sweden and West Germany were among those to follow. The
difficulties in wide mathematical disparity and in the organising of ever- increasing
numbers were discussed. Surprisingly, the increasing cost to future host countries
was not thought too heavy by most of the five leaders concerned above. They seemed

confident that governmental, industrial and academic support will be readily forth-
coming.

Robert Lyness.



FIRST DAY
Joutsa July 4, 1985

The name of the country proposing the question has been added at the end of each
question. On the papers given to competitors these names were not given.

1. A circle has centre on the side AB of the cyclic quadrilateral ABCD.

The other three sides are tangent to the circle. Prove that AD + BC = AB.

Great Britain.
2. Let n and k be given relatively prime natural numbers, 0 < k < n.
Each number in the set M = {], 2, ...y n—1} is coloured either blue or

white. It is given that

(i) for each i € M, both i and n-i have the same

colour, and

(ii) for each ie M, i # k, both i and ,i - kl have
the same colour.

Prove that all numbers in M must have the same colour.

Australia.

3. For any polynomial P(x) = ap t X+ ... 4 akxk with integer coefficients,
the number of coefficients which are odd is denoted by w(P). For i =0, 1,
2,... let Qi(x) = (1 +x)'. Prove that if il’ i2’ cees in are integers

such that 0 <4, < i, < ... <14, then

2

w(Q, + Q. + ... +0Q.)>w(Q.).
1o n TN
Netherlands.

Time allowed: 43 hours

Each problem is worth 7 points.

CoiTE PURELIN NSNS
Heisingin yopiston matemnatikaniaitos 90-1912874 Joutsar Oy e
Hailuskaiu 15 90-789625 EALDUTL 0T
00100 He!sinki 10



SECOND DAY

Joutsa July 5, 1985

Given a set M of 1985 distinct positive integers, none of which has a
prime divisor greater than 26. Prove that ! contains at least one
subset of four distinct elements whose product is the fourth power of an
integer.
Mongolia.

A circle with centre 0 passes through the vertices A and C of
triangle ABC, and intersects the segments AB and BC again at
distinct points K and N, respectively. The circumscribed circles
of the triangles ABC and KBN intersect at exactly two distinct points
B and M. Prove that angle O!"B 1is a right angle.

Soviet Union.
For every real number X1 construct the sequence X1s Xos oo by

setting
)

1
= X + —
Xn+1 *n ( n n

for each n > 1. Prove that there exists exactly one value of x, for

which 0 < Xq < Xe1 <1 for every n.

Sweden.
Time allowed: 4} hours
tach problem is worth 7 points.
PUHELIN PANKKITIL!
JN LSO M RETELIKETE NS 30-1912874 Jeutsan Osuuspankki

- skawtd 30789635 505207-422975



SOLUTIONS

These solutions are based on official solutions and will not be issued as they
stand to schools who apply for IMO 1985 papers to the Mathematical Association.

Let the points of tangency be E, F and G as shown in the figure.

By elementary trigonometry, we obtain

AD + BC = r(cot y - cot 2x) + r(cot x - cot 2y)

r(cot y - cot 2y) + r(cot x - cot 2x)

r csc 2y + r csc 2x

A0 + OB

AB.

The result is trivially true for n = 2. Suppose that the result is false
and consider the smallest n > 3 for which there exists a non-constant
two-colouring of M = {1, 2, ...y n-{} satisfying (i) and (ii) for some
0 <k <n. In this example, let j be the least element of M which is
coloured differently from element 1. There are three cases to consider.
(a) j > k . This is impossible since j and j-k are required to
have the same colour.
(p) j =k . The elements n-k+1, ..., n-1 must have the same colour
as element 1 but k, 2k, ... must have the opposite colour. This
implies that n-k is a multiple of k. But this is impossible

since k =3 > 1 and (n,k) = 1.



[99)

(c) j <k . Hrite n=gqk +r, 0<r <k, andnote that (k, r) =1.
Consider the induced colouring of M’ =.(1, 2y vuns k-I} and note
that it has the following properties:

(i) For each i € M', both i and k-i have the same colour.
(i1) For each i €M, i #r, both i and |i - r|[ have the
same colour.
To see (ii), note that if r > i then i, n-i, n-k-i, ..., r-i
is a monochromatic sequence, and if r < i then i-r, k+r-i, ...,
n-i, i is a monochromatic sequence. Since the two-colouring of
M' satisfies (i) and (ii) and is non-constant (1 and j have opposite
colours), we have reached a contradiction to our choice of n as

providing a minimal counterexample.

The proof is by induction on iq. For in =0 or 1 the result is

trivial. Let R and S denote polynomials with integer coefficients.

The following facts will be useful.

m k

(a) If k =2 then (1 + x)k =1+ (mod 2),

>

(b) If deg R < k then w(R + xX $) = w(R) + w(S),

(c) ]w(R) - w(S)I < w(R +S) <w(R) +w(S) (triangle

+

inequality).

2m+1

Let in > 1 be given and write k = 2" <i o< There are two

n

cases to consider.

(a) 11 <k . MWrite Qi + ... 4 Qi as R + (1 + x)k S where
1 n

R=0Q. + ...+ Qi and deg R, deg S < k. Then

A R UL x s) (a)
= w(R +S) + w(S) (b)
> w(R) (c)
> w(0, ) (induction hypothesis).



(b) i1 > k . MWrite Q. = (1 + x)k Roand Q, + ... +Q; = (1 +x)° s.
- 1 1 n

Then deg R, deg S < k and we have

Wy w0 ) S Xk s) (a)
=2 wlS) (b)
> 2 w(R) (induction hypothesis)
- w(R + x5R) (b)
= w(Q, ) (a).

Let Py = 2, p2 =3, ... p9 = 23. For each element of M there is a
corresponding vector (x1, Xos e xg) where Xi =0 if,in the prime
factorization of the element, P; has an even exponent and 1 if the
exponent is odd. By the pigeonnole principle, any subset of 29 + 1 =513
elements of M contains two distinct elements with the same exponent
vector, i.e. two distinct elements whose product is a perfect square.
It follows that M contains at least 737 pairs of distinct elements
where the product of each pair is a perfect squaref Consider the square
roots of these products. Again the prine factors are limited to Py

-s Pg and all we need are 513 to be sure that two have a product
which is a perfect square. We thus find aibi = c? and a.b. = c2

JJd
) _ 2 .
where as, aj, bi’ bj are elements of 1 and Cicj =d7, i.e.

a.b.a.b. = J*.

117

* To see this: Split the 1985 given integers arbitrarily into sets A, B, C
containing initially 1472, 513 and O integers respectively. '"Take a pair of
integers with the same vector from B and place the pair in C. Transfer any
2 integers from A to B. Then B has 513 integers again and most contgin 2
integers with the same vector."

Repeat the instructions in the sentences in quotation marks until A is empty.
There will be then 737 pairs in C.



The commnon chords of the three pairs of circles are concurrent at their

radical centre. C(alling P the radical centre, quadrilateral P!NC

is cyclic (because /P = /BKN = /NCA). Thus
Bil.8P = BN-BC = B0% - %
p11-P3 = PN-PK = P0% - 2,

where r is the circumradius of triangle AKC. Hence

2 2

PO- - BO BP (PH - BM)

(P + BM)(PM - BM)

= PM2 - BHZ.

This proves that O0M 1is perpendicular to BN,




Let Xy = X Then X, = Pn(x) where Pn is a polynomial of degree 2n-1

with positive coefficients. Note that Pn is increasing and convex for

x > 0. Observing that the condition x > x_ is equivalent to x_ > 1 - 1 s
z n+1 n n n

the problem can be reformulated as follows: there is a unique positive

real number t such that 1 - <P (t) <1 forall n> 1. Since Pn

1
n n
is increasing for x > 0 and Pn(O) = 0, it follows that for each n there

g ] -
)—1 ﬁ' and Pn(b)—1

are unique values for a_ and b_ such that P
n n n n

(a) = (i -1 -

nd
o a

(a
n

. 1 W _ o, 1
respectively. Note that P o ﬁ) =1 o

g ]
n+1) =1

n+1

(a

Since Pn+1 is increasing, it follows that a < a

Pr+t n+1”

Similarly, P 1(b ) = (1)(1 + 1 ) and P

n+ n n n+1(b

) =1 so b < bn’

n+1 n+1

It follows that ran, bn] is a rested sequence of closed intervals and

its intersection is non-empty. Since Pn is convex for x > 0 and Pn(O)
= 0, we find that Pn(x) < x/bn ,» 0<x< 1, idn particular 1 - % =

P(a ) < a /b.. Together with the fact that 1 =1b, > b, > by > ... this

means that bn - a, < 1/n for all n. Consequently, there is only one
point t which belongs to all the intervals. This point satisfies

| - 1

- < Pn(t) <1 for all n and it does so uniquely. For any point
x # t, either x < a, or bn < x for sufficiently large n meaning

that P (x) < 1 - 1 or else P _(x) > 1.
n n n



