THE XXI INTERNATIONAL MATHEMATICAL OLYMPIAD LONDON 1979

PROBLEMS PROPOSED BY THE GERMAN DEMOCRATIC REPUBLIC.

GDR1

Es seien $x_1, x_2, ..., x_n$ ($n \ge 2$) reelle Zahlen mit $x_1 \ge \frac{1}{n}$ (i = 1, 2, ..., n) und mit $x_1^2 + x_2^2 + ... + x_n^2 = 1$.

Man untersuche, ob das Produkt

$$P = x_1 x_2 \cdots x_n$$

einen größten bzw. kleinsten Wert annimmt und gebe bejahendenfalls diese Werte an.

GDR2

Sei M eine ebene Punktmenge aus mindestens zwei Elementen. Man beweise: Falls M zwei Symmetrieachsen g_1 und g_2 besitzt, die sich unter einem Winkel $\ll = q \cdot w$ schneiden, wobei q eine irrationale Zahl ist, so enthält M unendlich viele Punkte.

- SDR3 R sei eine Menge von genau 6 Elementen. Eine Menge F von Teilmengen von R wird S-Familie über R genau dann genannt, wenn sie die 3 Bedingungen,
 - (1) Für keine 2 Mengen X,Y aus F gilt: X & Y,
 - (2) Für je 3 Mengen X,Y,Z aus F gilt: X∪Y∪Z ≠ R,
 - (3) Es gilt: $\bigvee_{X \in F} X = R$,

erfüllt. |F| bezeichne die Anzahl der Elemente von F (d.h. Teilmengen von R, die in F enthalten sind). Man bestimme (falls existent)
n = max|F|, wobei das Maximum über alle S-Familien über R genommen
wird.

GDR4

Seien n,k > 1 natürliche Zahlen. Man bestimme die Anzahl A(n,k) der Lösungen in ganzen Zahlen der Gleichung

$$|x_1| + |x_2| + \cdots + |x_k| = n$$