THE XXI INTERNATIONAL MATHEMATICAL OLYMPIAD LONDON 1979

PROBLEMS PROPOSED BY THE NETHERLANDS.

NLI Inside an equilateral triangle ABC one constructs points P, Q and R such that

$$< QAB = < PBA = 15^{\circ}$$

 $< RBC = < QCB = 20^{\circ}$
 $< PCA = < RAC = 25^{\circ}$

Determine the angles of triangle PQR.

- NL2 In the plane a circle $\mathcal C$ of unit radius is given. For any line ℓ a number $s(\ell)$ is defined in the following way: if ℓ and $\mathcal C$ intersect in two points, $s(\ell)$ is their distance, otherwise $s(\ell) = 0$. Let $\mathcal P$ be a point at distance $\mathcal P$ from the centre of $\mathcal C$. One defines $M(\mathcal P)$ to be the maximum value of the sum s(m) + s(n), where m and n are variable mutually orthogonal lines through $\mathcal P$. Determine the values of $\mathcal P$ for which $M(\mathcal P) > 2$.
- NL3 Let there be given two sequences of integers $f_i(1)$, $f_i(2)$, $f_i(3)$, ... (i = 1, 2) satisfying
 - (i) $f_i(n,m) = f_i(n)$. $f_i(m)$ if g.c.d.(n,m) = 1,
 - (ii) for every prime P and all $k = 2, 3, 4, \ldots$ $f_i(P^k) = f_i(P) f_i(P^{k-1}) P^2 f(P^{k-2}).$
 - Moreover, for every prime ${\it P}$
 - (iii) $f_1(P) = 2 P,$
 - (iv) $|f_2(P)| < 2P$.

Prove that $| f_2(n) | < f_1(n)$ for all n.