THE XXI_INTERNATIONAL MATHEMATICAL OLYMPIAD LONDON 1979

PROBLEMS PROPOSED BY POLAND.

Let be given m positive integers a_1, \ldots, a_m . Prove that there exist less than 2^m positive integers b_1, \ldots, b_n such that all sums of distinct b_k 's are distinct and all a_i ($i \le m$) occur among them.

Let ABC be an arbitrary triangle and let S_1 , S_2 , ..., S_7 be circles satisfying the following conditions:

S, is tangent to CA and AB,

 S_2 is tangent to S_1 , AB and BC,

S₃ is tangent to S₂, BC and CA,

 S_7 is tangent to S_6 , CA and AB.

Prove that the circles S₁ and S₇ coincide.

PL3 Let be given a real number $\lambda > 1$ and a sequence (n_k) of positive integers such that

$$\frac{n_{k+1}}{n_k} > \lambda \qquad \text{for } k = 1, 2, \dots$$

Prove that there exists a positive integer c such that every positive integer n cannot be presented in more than c ways in the form $n = n_k + n_j$ or $n = n_r - n_s$.

PL4 An infinite increasing sequence of positive integers n_j /j=1,2,.

.../ has the property that for a certain C and every N > 0

$$/\#/ \qquad \frac{1}{N} \sum_{n_j \leq N} n_j \leq C$$

Frove there exist finitely many sequences $h_j^{(i)}$ /i = 1,2,...,k/ such that

$$\{n_1, n_2, \dots\} = \bigcup_{i=1}^{k} \{m_1^{i}, m_2^{i}, \dots\}$$

and $m_{j+1}^{/i/} > 2m_{j}^{/i/}$ /1 $\leq i \leq k$, j=1,2,... /.