THE XXI INTERNATIONAL MATHEMATICAL OLYMPIAD LONDON 1979

PROBLEMS PROPOSED BY ROMANIA

Consider the sequences (a_n) , (b_n) defined by $a_1=3$, $b_1=100$, $a_{n+1}=3^n$, $b_{n+1}=100^n$. Find the smallest integer m for which

 $p^{m} = a^{100}.$

R3

Let a,b be mutually prime integers. Show that the equation $ax^2+by^2=z^3$ has can infinite set of solutions (x,y,z) with x,y,z integers and x,y mutually prime(in each solution).

Show that, for every natural n, $n\sqrt{2} - [n\sqrt{2}] > \frac{1}{2n\sqrt{2}}$

and that for every $\xi > 0$ there exists a natural n with $n\sqrt{2} - \left[n\sqrt{2}\right] < \frac{1}{2n\sqrt{2}} + \xi$.

- Let M be a set and A,B,C be given subsets of M.Find a necessary and sufficient condition for the existence of a set XCM for which $(X \cup A) \setminus (X \cap B) = C$. Describe all these sets X.
- Prove that there exists a natural number k_0 such that for every natural $k>k_0$ we may find a finite number of lines in the plane, not all parallel to one of them, which divide the plane exactly in k regions. Find k_0 .