THE XXI INTERNATIONAL MATHEMATICAL OLYMPIAD LONDON 1979

PROBLEMS PROPOSED BY SWEDEN.

· S1

`S2

S4

Determine the maximum value of

$$x^2y^2z^2w$$

when x,y,z,w are ≥ 0 and 2x + xy + z + yzw = 1.

Given the integer $\underline{n} > 1$ and the real number $\underline{a} > 0$, determine the maximum of

$$\sum_{1}^{\Sigma} \underline{x}_{i} \underline{x}_{i+1}$$

taken over all nonhegative numbers x; with sum a.

Let $a_1 \le a_2 \le \cdots \le a_n$ and $b_1 \le b_2 \le \cdots \le b_n$ be two sequences such that

$$\sum_{k=1}^{m} a_k \geq \sum_{k=1}^{m} b_k$$

for all $m \le n$ with equality for m = n. Let f be a convex function defined on the real numbers. Prove that

$$\sum_{k=1}^{n} f(a_k) \leq \sum_{k=1}^{n} f(b_k).$$

T is a given triangle with vertices P_1 , P_2 , P_3 . Consider an arbitrary subdivision of T into finitely many subtriangles such that no vertex of a subtriangle lies strictly between two vertices of another subtriangle. To each vertex V of the subtriangles there is assigned a number n(V) according to the following rules:

- (i) If $V = P_i$, then n(V) = i
- (ii) If V lies on the side $P_i P_j$ of T, then n(V) = i or j.
- (iii) If V lies inside the triangle T, then n(V) is any of the numbers 1,2,3.

Prove that there exists at least one subtriangle whose vertices are numbered 1,2 and 3.

