THE XXI INTERNATIONAL MATHEMATICAL OLYMPIAD LONDON 1979

PROBLEMS PROPOSED BY THE U.S.A.

USA! If a_1, a_2, \dots, a_n denote the lengths of the sides of an arbitrary n - gon, prove that

$$2 \geq \frac{\hat{a}_1}{s - a_1} + \frac{a_2}{s - a_2} + \cdots + \frac{a_n}{s - a_n} \geq \frac{n}{n - 1}$$

where $s = a_1 + a_2 + ... + a_n$.

USA2 From point P on arc BC of the circumcircle about triangle ABC, PX is constructed perpendicular to BC, PY perpendicular to AC and PZ perpendicular to AB (all extended if necessary). Prove that

$$\frac{BC}{PX} = \frac{AC}{PY} + \frac{AB}{PZ} .$$

USA3 Given $f(x) \le x$ for all real x; $f(x + y) \le f(x) + f(y) \text{ for all real } x, y ;$ Prove f(x) = x for all x.

- USA4 Find all natural numbers n for which $2^8 + 2^{11} + 2^n$ is a perfect square.
- USA5 Circle O with center O on base BC of isosceles triangle ABC is tangent to the equal sides AB, AC. If point P on AB and point Q on AC are selected such that $PB \times CQ = \left(\frac{1}{2} PC\right)^2$, prove that line segment PQ is tangent to circle O, and conversely.
- USA6 Given a point P in a given plane π and also a given point Q not in π . Show how to determine a point R in π such that (QP + PR)/(QR) is a maximum.